Water (IAPWS Formulation 1995 for General and Scientific Use)

1 Temperature Scale

International Temperature Scale of 1990 (ITS-90)

2 Libraries and Single Shot Programs

Library for UNIX
Library for Windows
Single shot program for UNIX
Single shot program for Windows
libdiapws95.a
diapws95.lib/ diapws95.dll
diapws 95 -ss
diapws 95 -ss.exe

3 Fundamental Constants

Molecular formula
Molar mass
Gas constant
Critical temperature
Critical pressure
Critical specific volume
Triple-point temperature
Triple-point pressure
$\mathrm{H}_{2} \mathrm{O}$
$M=18.015268 \mathrm{~g} / \mathrm{mol}$
$R=461.5181 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$
$T_{c}=647.0960 \mathrm{~K}\left(373.9460{ }^{\circ} \mathrm{C}\right)$
$P_{c}=22.0640 \mathrm{MPa}$
$v_{c}=0.003106 \mathrm{~m}^{3} / \mathrm{kg}$
$T_{t}=273.160 \mathrm{~K}\left(0.010^{\circ} \mathrm{C}\right)$
$P_{t}=0.6117 \mathrm{kPa}$

4 Reference State

The specific internal energy and the specific entropy of the saturated liquid at the triple point temperature $T_{t}=273.16 \mathrm{~K}$ are $0 \mathrm{~J} / \mathrm{kg}$ and $0 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$, respectively.

5 Valid Range of Equation of State

Upper limit of temperature $\quad T_{\max }=1273 \mathrm{~K}$
Lower limit of temperature $\quad T_{\text {min }}=$ temperature on the melting line
Upper limit of pressure $\quad P_{\max }=1000 \mathrm{MPa}$

6 References

Equation of state and Melting pressure:

W. Wagner and A. Pruß, The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, J. Phys. Chem. Ref. Data, 31, 2, pp.387-535, (2002).

Transport properties:

The current version of this library has not supported the calculation of the transport properties yet.

7 Available Functions and Valid Range of Parameters

All functions listed below have the return value and argument(s) in single precision. The functions with the return value and argument(s) in double precision begin with "D" prefix, for instance, double precision functions corresponding to PST and HPT in single precision are DPST and DHPT, respectively.

Function	Return value and Argument(s)	Valid range of argument(s)
$\operatorname{AIPPT}(P, T)$	N/A	
$\mathbf{A J T P T}(P, T)$	AJTPT: Joule-Thomson coefficient [K/Pa] P : Pressure [Pa], [bar] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
AKPD (P)	AKPD: Isentropic exponent of saturated liquid [-] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
AKPDD (P)	AKPDD: Isentropic exponent of saturated vapor [-] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
$\boldsymbol{A K P T}(P, T)$	AKPT: Isentropic exponent [-] P : Pressure [Pa], [bar] T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
$\operatorname{AKTD}(T)$	AKTD: Isentropic exponent of saturated liquid [-] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
$\operatorname{AKTDD}(T)$	AKTDD: Isentropic exponent of saturated vapord [-] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
ALAPP(P)	N/A	
ALAPT(T)	N/A	
ALHP (P)	ALHP: Latent Heat of Vaporization [J / kg] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
ALHT(T)	ALHT: Latent Heat of Vaporization [J/kg] T : Temperature $[\mathrm{K}]$, $\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
ALMPD (P)	N/A	
ALMPDD (P)	N/A	
ALMPT (P, T)	N/A	
ALMTD (T)	N/A	
ALMTDD (T)	N/A	
AMUPD (P)	N/A	
AMUPDD (P)	N/A	
AMUPT (P, T)	N/A	
AMUTD (T)	N/A	
AMUTDD (T)	N/A	
BPPT(P, T)	BPPT: Volumetric coefficient of expansion [1/K] P : Pressure [Pa], [bar] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
BSPT (P, T)	BSPT: Isentropic compressibility $[1 / \mathrm{Pa}]$ P : Pressure [Pa], [bar] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
BTPT(P, T)	BTPT: Isothermal compressibility [1/Pa] P : Pressure [Pa], [bar] T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
BVPT(P, T)	BVPT: Pressure coefficient [$1 / \mathrm{K}]$ P: Pressure [Pa], [bar] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
CPPD (P)	CPPD: Isobaric heat capacity of saturated liquid [J/(kg•K)] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
CPPDD (P)	CPPDD: Isobaric heat capacity of saturated vapor [J/(kg•K)] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
$\mathbf{C P P T}(P, T)$	CPPT: Isobaric heat capacity [J/(kg•K)] P : Pressure [Pa], [bar] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
CPTD (T)	CPTD: Isobaric heat capacity of saturated liquid [J/(kg•K)] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
CPTDD(T)	CPTDD: Isobaric heat capacity of saturated vapor [$\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$

Function	Return value and Argument(s)	Valid range of argument(s)
$\boldsymbol{C R P}(A)$	$\begin{aligned} & \text { CRP: Critical Constants } \\ & A=\text { ' } \mathrm{H}^{\prime}: \text { specific enthalpy, } 2084.256 \mathrm{~kJ} / \mathrm{kg} \\ & A=\mathrm{P}^{\prime}: \text { pressure, } 22.0640 \mathrm{MPa}(220.640 \mathrm{bar}) \\ & A=\mathrm{S}^{\prime} \mathrm{S}^{\prime}: \text { specific entropy, } 4.4070 \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K}) \\ & A=\mathrm{T}^{\prime} \mathrm{T}^{\prime}: \text { temperature, } 647.0960 \mathrm{~K}\left(373.9460{ }^{\circ} \mathrm{C}\right) \\ & A=\mathrm{V}^{\prime} \mathrm{V}^{\prime}: \text { specific volume, } 0.003106 \mathrm{~m}^{3} / \mathrm{kg} \end{aligned}$	'H', 'P', 'S', 'T', and 'V'
CVPD (P)	CVPD: Isochoric heat capacity of saturated liquid [J/(kg•K)] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
CVPDD (P)	CVPDD: Isochoric heat capacity of saturated vapor [J/(kg•K)] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
CVPT(P, T)	CVPT: Isochoric heat capacity [J/(kg•K)] P : Pressure [Pa], [bar] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
CVTD (T)	CVTD: Isochoric heat capacity of saturated liquid [J/(kg•K)] T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
CVTDD (T)	CVTDD: Isochoric heat capacity of saturated vapor [J/(kg•K)] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
EPSPD (P)	N/A	
EPSPDD (P)	N/A	
EPSPT (P, T)	N/A	
EPSTD (T)	N/A	
EPSTDD (T)	N/A	
FC(A)	$\begin{aligned} & \text { FC: Fundamental constants } \\ & A=\text { ' } \mathrm{M}^{\prime}: \text { Molar mass, } 18.015268 \mathrm{~g} / \mathrm{mol} \\ & A=\mathrm{R}^{\prime}: \text { Gas constant, } 461.5181 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{~K}) \end{aligned}$	'M' and 'R'
GAMPD (P)	GAMPD: Heat capacity ratio of saturated liquid [-] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
GAMPDD (P)	GAMPDD: Heat capacity ratio of saturated vapor [-] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
$\mathbf{G A M P T}(P, T)$	GAMPT: Heat capacity ratio [-] P : Pressure [Pa], [bar] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
GAMTD (T)	GAMTD: Heat capacity ratio of saturated liquid [-] T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
GAMTDD (T)	GAMTDD: Heat capacity ratio of saturated vapor [-] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
HPD (P)	HPD: Specific enthalpy of saturated liquid [J/kg] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
HPDD (P)	HPDD: Specific enthalpy of saturated vapor [J/kg] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
HPS (P, S)	HPS: Specific enthalpy [J/kg] P : Pressure [Pa], [bar] S : Specific entropy [J/(kg•K]	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{SPT}(P, \operatorname{TMLP}(P)) \\ & \quad \leq S \leq \operatorname{SPT}\left(P, T_{\max }\right) \end{aligned}$
$\mathbf{H P T}(P, T)$	HPT: Specific enthalpy [J/kg] P : Pressure [Pa], [bar] T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
$\mathbf{H P X}(P, X)$	HPX: Specific enthalpy [J/kg] P : Pressure [Pa], [bar] X : Dryness fraction [-]	$\begin{aligned} & P_{t} \leq P \leq P_{c} \\ & 0 \leq X \leq 1.0 \end{aligned}$
HTD (T)	HTD: Specific enthalpy of saturated liquid [J/kg] T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
HTDD (T)	HTDD: Specific enthalpy of saturated vapor [J/kg] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
$\boldsymbol{H T X}(T, X)$	HTX: Specific enthalpy [J/kg] T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$ X : Dryness fraction [-]	$\begin{aligned} & T_{t} \leq T \leq T_{c} \\ & 0 \leq X \leq 1.0 \end{aligned}$
$\operatorname{IDENTF}(A)$	```IDENTF : Package Identification (CHARACTER*20) \(A={ }^{\prime} \mathrm{C}^{\prime}\) : Molecular formula, \(\mathrm{H}_{2} \mathrm{O}\) \(A=\) 'S': Substance name, Water \(A={ }^{\prime} \mathrm{V}^{\prime}\) : Version number, 13.1```	'C', 'S', and 'V'
PLDT(T)	N/A	
PMLT(T)	PMLT: Pressure on melting curve [Pa], [bar] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{\max }$
PRPD (P)	N/A	

Function	Return value and Argument(s)	Valid range of argument(s)
PRPDD (P)	N/A	
PRPT (P, T)	N/A	
$\operatorname{PRTD}(T)$	N/A	
PRTDD(T)	N/A	
$\operatorname{PSBT}(T)$	N/A	
PST(T)	PST: Saturation pressure [Pa], [bar] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
PSTD (T)	N/A	
PSTDD(T)	N/A	
SIGP((P)	N/A	
SIGT(T)	N/A	
$\mathbf{S P D}(P)$	SPD: Specific entropy of saturated Liquid [J/(kg•K)] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
SPDD (P)	SPDD: Specific entropy of saturated vapor [J/(kg•K)] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
$\mathbf{S P T}(P, T)$	SPT: Specific entropy [J/(kg•K)] P : Pressure [Pa], [bar] T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
$\mathbf{S P X}(P, X)$	SPX: Specific entropy $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$ $P:$ Pressure [Pa], [bar] $X:$ Dryness fraction [-]	$\begin{aligned} & P_{t} \leq P \leq P_{c} \\ & 0 \leq X \leq 1.0 \end{aligned}$
STD (T)	STD: Specific entropy of saturated liquid [J/(kg•K)] T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
STDD (T)	STDD: Specific entropy of saturated vapor [J/(kg $\cdot \mathrm{K})$] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
$\boldsymbol{\operatorname { S T X }}(T, X)$	STX: Specific entropy $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$ T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$ X : Dryness fraction [-]	$\begin{aligned} & T_{t} \leq T \leq T_{c} \\ & 0 \leq X \leq 1.0 \end{aligned}$
TLDP (P)	N/A	
TMLP (P)	TMLP: Temperature on melting-line [K], $\left[{ }^{\circ} \mathrm{C}\right]$ P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{\text {max }}$
$\mathbf{T P H}(P, H)$	TPH: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$ P : Pressure [Pa], [bar] H : Specific enthalpy $[\mathrm{J} / \mathrm{kg}]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{HPT}(P, \operatorname{TMLP}(P)) \\ & \quad \leq H \leq \operatorname{HPT}\left(P, T_{\max }\right) \end{aligned}$
TPH2 (P, H)	N/A	
TPS (P, S)	TPS: Temperature [K], $\left[{ }^{\circ} \mathrm{C}\right]$ P : Pressure [Pa], [bar] S : Specific entropy $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{SPT}(P, \operatorname{TMLP}(P)) \\ & \quad \leq S \leq \operatorname{SPT}\left(P, T_{\max }\right) \end{aligned}$
TPS2(P, S)	N/A	
TPSEUP (P)	N/A	
$\mathbf{T P V}(P, V)$	TPV: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$ P : Pressure [Pa], [bar] V : Specific volume $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{VPT}(P, \operatorname{TMLP}(P)) \\ & \quad \leq V \leq \operatorname{VPT}\left(P, T_{\max }\right) \end{aligned}$
TRPL (A)	$\begin{aligned} & \text { TRPL: Properties at Triple Point } \\ & A={ }^{\prime} \mathrm{P}^{\prime}: \text { Pressure, } 0.6117 \mathrm{KPa} \\ & A=\mathrm{T}^{\prime}: \text { Temperature, } 273.160 \mathrm{~K}\left(0.010{ }^{\circ} \mathrm{C}\right) \end{aligned}$	'P' and 'T'
TSBP (P)	N/A	
TSP (P)	$\begin{aligned} & \text { TSP: Saturation temperature }[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right] \\ & P: \text { Pressure }[\mathrm{Pa}],[\mathrm{bar}] \end{aligned}$	$P_{t} \leq P \leq P_{c}$
TSPD (P)	N/A	
TSPDD (P)	N/A	
UPD (P)	UPD: Specific internal energy of saturated liquid [J/kg] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
UPDD (P)	UPDD: Specific internal energy of saturated vapor $[\mathrm{J} / \mathrm{kg}]$ P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
$\mathbf{U P S}(P, S)$	UPS: Specific internal energy [J/kg] P : Pressure [Pa], [bar] S : Specific entropy [J/(kg•K)]	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{SPT}(P, \operatorname{TMLP}(P)) \\ & \quad \leq S \leq \operatorname{SPT}\left(P, T_{\max }\right) \end{aligned}$
$\mathbf{U P T}(P, T)$	UPT: Specific internal energy [J/kg] P : Pressure [Pa], [bar] T : Temperature [K], [$\left.{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
$\mathbf{U P X}(P, X)$	UPX: Specific internal energy [J/kg] P : Pressure [Pa], [bar] X : Dryness fraction [-]	$\begin{aligned} & P_{t} \leq P \leq P_{c} \\ & 0 \leq X \leq 1.0 \end{aligned}$

Function	Return value and Argument(s)	Valid range of argument(s)
UTD (T)	UTD: Specific internal energy of saturated liquid [J/kg] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
UTDD (T)	UTDD: Specific internal energy of saturated vapor [J/kg] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
$\mathbf{U T X}(T, X)$	UTX: Specific internal energy $[\mathrm{J} / \mathrm{kg}]$ T : Temperature $[\mathrm{K}]$, X : Dryness fraction [-]	$\begin{aligned} & T_{t} \leq T \leq T_{c} \\ & 0 \leq X \leq 1.0 \end{aligned}$
$\mathbf{V P D}(P)$	VPD: Specific volume of saturated liquid $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
VPDD (P)	VPDD: Specific volume of saturated vapor $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
$\mathbf{V P S}(P, S)$	VPS: Specific volume $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ P : Pressure [Pa], [bar] S : Specific entropy $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{SPT}(P, \operatorname{TMLP}(P)) \\ & \quad \leq S \leq \operatorname{SPT}\left(P, T_{\max }\right) \end{aligned}$
$\mathbf{V P T}(P, T)$	VPT: Specific volume $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ P : Pressure [Pa], [bar] T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
$\mathbf{V P X}(P, X)$	VPX: Specific volume $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ P : Pressure [Pa], [bar] X : Dryness fraction [-]	$\begin{aligned} & P_{t} \leq P \leq P_{c} \\ & 0 \leq X \leq 1.0 \end{aligned}$
VTD (T)	VTD: Specific volume of saturated liquid $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ T: Temperature [K], [$\left.{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
VTDD (T)	VTDD: Specific volume of saturated vapor $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
$\mathbf{V T X}(T, X)$	VTX: Specific volume $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$ X : Dryness fraction [-]	$\begin{aligned} & T_{t} \leq T \leq T_{c} \\ & 0 \leq X \leq 1.0 \end{aligned}$
WPD (P)	WPD: Sound speed in saturated liquid [m / s] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
WPDD (P)	WPDD: Sound speed in saturated vapor [m/s] P : Pressure [Pa], [bar]	$P_{t} \leq P \leq P_{c}$
$\mathbf{W P T}(P, T)$	WPT: Sound speed [m/s] P : Pressure [Pa], [bar] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{aligned} & P_{t} \leq P \leq P_{\max } \\ & \operatorname{TMLP}(P) \leq T \leq T_{\max } \end{aligned}$
WTD(T)	WTD: Sound speed in saturated liquid [m / s] T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
WTDD(T)	WTDD: Sound speed in saturated vapor [m / s] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$	$T_{t} \leq T \leq T_{c}$
$\mathbf{X P H}(P, H)$	XPH: Dryness Fraction [- P : Pressure [Pa], [bar] H : Specific enthalpy $[\mathrm{J} / \mathrm{kg}]$	$\begin{aligned} & P_{t} \leq P \leq P_{c} \\ & \operatorname{HPD}(P) \leq H \leq \operatorname{HPDD}(P) \end{aligned}$
$\mathbf{X P S}(P, S)$	$\begin{aligned} & \text { XPS: Dryness Fraction }[-] \\ & P: \text { Pressure }[\mathrm{Pa}],[\mathrm{bar}] \\ & S: \text { Specific entropy }[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{~K})] \end{aligned}$	$\begin{aligned} & P_{t} \leq P \leq P_{c} \\ & \operatorname{SPD}(P) \leq S \leq \operatorname{SPDD}(P) \end{aligned}$
$\mathbf{X P U}(P, U)$	XPU: Dryness Fraction [-] P : Pressure [Pa], [bar] U : Specific internal energy $[\mathrm{J} / \mathrm{kg}]$	$\begin{aligned} & P_{t} \leq P \leq P_{c} \\ & \operatorname{UPD}(P) \leq U \leq \operatorname{UPDD}(P) \end{aligned}$
$\mathbf{X P V}(P, V)$	$\begin{aligned} & \text { XPV: Dryness Fraction }[-] \\ & P: \text { Pressure }[\mathrm{Pa}],[\mathrm{bar}] \\ & V: \text { Specific volume }\left[\mathrm{m}^{3} / \mathrm{kg}\right] \end{aligned}$	$\begin{aligned} & P_{t} \leq P \leq P_{c} \\ & \operatorname{VPD}(P) \leq V \leq \operatorname{VPDD}(P) \end{aligned}$
$\mathbf{X T H}(T, H)$	XTH: Dryness Fraction $[-]$ $T:$ Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$ $H:$ Specific enthalpy $[\mathrm{J} / \mathrm{kg}]$	$\begin{aligned} & T_{t} \leq T \leq T_{c} \\ & \operatorname{HTD}(T) \leq H \leq \operatorname{HTDD}(T) \end{aligned}$
$\mathbf{X T S}(T, S)$	XTS: Dryness Fraction [-] T : Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$ S : Specific entropy $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$	$\begin{aligned} & T_{t} \leq T \leq T_{c} \\ & \operatorname{STD}(T) \leq S \leq \operatorname{STDD}(T) \end{aligned}$
$\mathbf{X T U}(T, U)$	XTU: Dryness Fraction [-] T: Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$ U : Specific internal energy $[\mathrm{J} / \mathrm{kg}]$	$\begin{aligned} & T_{t} \leq T \leq T_{c} \\ & \operatorname{UTD}(T) \leq U \leq \operatorname{UTDD}(T) \end{aligned}$
$\mathbf{X T V}(T, V)$	XTV: Dryness Fraction $[-]$ $T:$ Temperature $[\mathrm{K}],\left[{ }^{\circ} \mathrm{C}\right]$ $V:$ Specific volume $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$	$\begin{aligned} & T_{t} \leq T \leq T_{c} \\ & \operatorname{VTD}(T) \leq V \leq \operatorname{VTDD}(T) \end{aligned}$

